36 research outputs found

    Binary Shapelet Transform for Multiclass Time Series Classification

    Get PDF
    Shapelets have recently been proposed as a new primitive for time series classification. Shapelets are subseries of series that best split the data into its classes. In the original research, shapelets were found recursively within a decision tree through enumeration of the search space. Subsequent research indicated that using shapelets as the basis for transforming datasets leads to more accurate classifiers. Both these approaches evaluate how well a shapelet splits all the classes. However, often a shapelet is most useful in distinguishing between members of the class of the series it was drawn from against all others. To assess this conjecture, we evaluate a one vs all encoding scheme. This technique simplifies the quality assessment calculations, speeds up the execution through facilitating more frequent early abandon and increases accuracy for multi-class problems. We also propose an alternative shapelet evaluation scheme which we demonstrate significantly speeds up the full search

    Shapelet Transforms for Univariate and Multivariate Time Series Classification

    Get PDF
    Time Series Classification (TSC) is a growing field of machine learning research. One particular algorithm from the TSC literature is the Shapelet Transform (ST). Shapelets are a phase independent subsequences that are extracted from times series to form discriminatory features. It has been shown that using the shapelets to transform the datasets into a new space can improve performance. One of the major problems with ST, is that the algorithm is O(n2m4), where n is the number of time series and m is the length of the series. As a problem increases in sizes, or additional dimensions are added, the algorithm quickly becomes computationally infeasible. The research question addressed is whether the shapelet transform be improved in terms of accuracy and speed. Making algorithmic improvements to shapelets will enable the development of multivariate shapelet algorithms that can attempt to solve much larger problems in realistic time frames. In support of this thesis a new distance early abandon method is proposed. A class balancing algorithm is implemented, which uses a one vs. all multi class information gain that enables heuristics which were developed for two class problems. To support these improvements a large scale analysis of the best shapelet algorithms is conducted as part of a larger experimental evaluation. ST is proven to be one of the most accurate algorithms in TSC on the UCR-UEA datasets. Contract classification is proposed for shapelets, where a fixed run time is set, and the number of shapelets is bounded. Four search algorithms are evaluated with fixed run times of one hour and one day, three of which are not significantly worse than a full enumeration. Finally, three multivariate shapelet algorithms are developed and compared to benchmark results and multivariate dynamic time warping

    Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: A case study of lettuce production:AirSurf-Lettuce

    Get PDF
    Aerial imagery is regularly used by crop researchers, growers and farmers to monitor crops during the growing season. To extract meaningful information from large-scale aerial images collected from the field, high-throughput phenotypic analysis solutions are required, which not only produce high-quality measures of key crop traits, but also support professionals to make prompt and reliable crop management decisions. Here, we report AirSurf, an automated and open-source analytic platform that combines modern computer vision, up-to-date machine learning, and modular software engineering in order to measure yield-related phenotypes from ultra-large aerial imagery. To quantify millions of in-field lettuces acquired by fixed-wing light aircrafts equipped with normalised difference vegetation index (NDVI) sensors, we customised AirSurf by combining computer vision algorithms and a deep-learning classifier trained with over 100,000 labelled lettuce signals. The tailored platform, AirSurf-Lettuce, is capable of scoring and categorising iceberg lettuces with high accuracy (>98%). Furthermore, novel analysis functions have been developed to map lettuce size distribution across the field, based on which associated global positioning system (GPS) tagged harvest regions have been identified to enable growers and farmers to conduct precision agricultural practises in order to improve the actual yield as well as crop marketability before the harvest

    HIVE-COTE 2.0: a new meta ensemble for time series classification

    Get PDF
    The Hierarchical Vote Collective of Transformation-based Ensembles (HIVE-COTE) is a heterogeneous meta ensemble for time series classification. HIVE-COTE forms its ensemble from classifiers of multiple domains, including phase-independent shapelets, bag-of-words based dictionaries and phase-dependent intervals. Since it was first proposed in 2016, the algorithm has remained state of the art for accuracy on the UCR time series classification archive. Over time it has been incrementally updated, culminating in its current state, HIVE-COTE 1.0. During this time a number of algorithms have been proposed which match the accuracy of HIVE-COTE. We propose comprehensive changes to the HIVE-COTE algorithm which significantly improve its accuracy and usability, presenting this upgrade as HIVE-COTE 2.0. We introduce two novel classifiers, the Temporal Dictionary Ensemble and Diverse Representation Canonical Interval Forest, which replace existing ensemble members. Additionally, we introduce the Arsenal, an ensemble of ROCKET classifiers as a new HIVE-COTE 2.0 constituent. We demonstrate that HIVE-COTE 2.0 is significantly more accurate on average than the current state of the art on 112 univariate UCR archive datasets and 26 multivariate UEA archive datasets

    SeedGerm: a cost‐effective phenotyping platform for automated seed imaging and machine‐learning based phenotypic analysis of crop seed germination

    Get PDF
    Efficient seed germination and establishment are important traits for field and glasshouse crops. Large-scale germination experiments are laborious and prone to observer errors, leading to the necessity for automated methods. We experimented with five crop species, including tomato, pepper, Brassica, barley, and maize, and concluded an approach for large-scale germination scoring. Here, we present the SeedGerm system, which combines cost-effective hardware and open-source software for seed germination experiments, automated seed imaging, and machine-learning based phenotypic analysis. The software can process multiple image series simultaneously and produce reliable analysis of germination- and establishment-related traits, in both comma-separated values (CSV) and processed images (PNG) formats. In this article, we describe the hardware and software design in detail. We also demonstrate that SeedGerm could match specialists’ scoring of radicle emergence. Germination curves were produced based on seed-level germination timing and rates rather than a fitted curve. In particular, by scoring germination across a diverse panel of Brassica napus varieties, SeedGerm implicates a gene important in abscisic acid (ABA) signalling in seeds. We compared SeedGerm with existing methods and concluded that it could have wide utilities in large-scale seed phenotyping and testing, for both research and routine seed technology applications

    Researching AI Legibility Through Design

    Get PDF
    Everyday interactions with computers are increasingly likely to involve elements of Artificial Intelligence (AI). Encompassing a broad spectrum of technologies and applications, AI poses many challenges for HCI and design. One such challenge is the need to make AI’s role in a given system legible to the user in a meaningful way. In this paper we employ a Research through Design (RtD) approach to explore how this might be achieved. Building on contemporary concerns and a thorough exploration of related research, our RtD process reflects on designing imagery intended to help increase AI legibility for users. The paper makes three contributions. First, we thoroughly explore prior research in order to critically unpack the AI legibility problem space. Second, we respond with design proposals whose aim is to enhance the legibility, to users, of systems using AI. Third, we explore the role of design-led enquiry as a tool for critically exploring the intersection between HCI and AI research
    corecore